Audio 1

Toshihide Nakayama
Tokyo University of Foreign Studies

Carlos Nash
University of Kansas
Who are we?

• **Toshihide Nakayama**
 – Professor at the Research Institute for Languages and Cultures of Asia and Africa
 – Research interests: Wakashan languages (North American Pacific Northwest Coast), morphosyntax, linguistic typology
 – nakayama@aa.tufs.ac.jp

• **Carlos Nash**
 – Assistant Professor of Linguistic Anthropology
 – Research interests: socio-cultural linguistics, discourse analysis, phonetics, phonology, Bantu languages
 – cmnash@ku.edu
Course overview

• Session 1: The basics
• Session 2: Recording
• Session 3: Workflow and basic editing
• Session 4: Metadata, setup recommendation, wrap up
Why do we need to care about audio recording?

- Typical goals and uses of audio recordings in language documentation
- What are criteria for "good enough" in relation to different types of projects
- How poor recordings affect our work in language documentation?
Big questions

• What are we actually recording?
• What / Who is it for?
• What is the role of audio in language documentation?
Elements of good recordings

• Signal quality
 – Accuracy / Intelligibility
• Signal/Noise ratio
• Experience quality
 – Listenability / Localization of source / Separation of noise
• Content
• Fit for purpose
Signal and noise

• The level of a desired signal to the level of background noise
• What are part of what we want to capture, i.e., signal?
• Noise
 – typical noises and their sources, and how to deal with them
Signal

• Content
 – Identity of the speakers
 – Performance

• Context and spatial information
Noise (unwanted sound)

• Noise from environment
 – near: people, animals, activities, TV, radio
 – far: traffic, generators, planes
 – machines: clocks, refrigerators, fans, computers, cell phones
 – not hearable: electrical interference
 – acoustic: reflections/resonance
Noise (unwanted sound)

• Noise generated by (unwanted parts of) event:
 – shuffling papers, clothes
 – table banging
 – backchannel from interviewer
 – equipment handling, especially microphones and cables (and recorders with built-in mics)
Noise (unwanted sound)

• Noise generated by equipment:
 – wrong input levels
 – circuitry noise (cheap or incompatible)
 – compression loss or distortion
 – automatic gain control effects
 – video camera motors
Dealing with noise:

– be prepared and aware
– seek collaboration
– monitor
– use or modify room acoustics
– location
– direction
– surfaces
– reflection
– Isolation
How humans hear

- a human listener has:
 - location, orientation in a physical setting
 - two ears - incredibly sensitive
 - a brain/mind
- the mind selects from various sources of sound and other sensory information, using long- and short-term memory
- listening is actually a “hallucination”
Range of human hearing

- **Frequency sensitivity**
 - Lowest: 20 Hz
 - Highest: 20,000 Hz

- **Dynamic range**
 - Threshold of hearing: 0 dB
 - Threshold of pain: 130 dB
How machines ‘hear’

- microphones can’t distinguish wanted from unwanted sound
- microphones don’t have “edges” like camera lenses
- the recording process removes acoustic information
How sound travels

- The inverse square law
How sound travels

- The inverse square law
Using the inverse square law

• If you have noise sources, maximise the signal to noise ratio by:
 – placing the microphone as close as possible to the signal source
 – placing the microphone as far as possible from the noise source
Analogue vs. digital recording

- **Analogue**
 - physical recording medium is made to vary in a manner analogous to the variations in air pressure of the original sound

- **Digital**
 - converting the physical properties of the original sound into a sequence of numbers
Digital recording

• Sampling rate
 – the number of samples per unit of time

• Bit depth (word-size)
 – the number of bits used to represent a single audio wave
Survey of equipment

- Examine the pros and cons of each
- Examine budget considerations
- Equipment
 - Microphones, stands, and other accessories
 - Recorders
 - Cables and connectors
 - Power supplies
 - Media (SD cards, DATs, CDs, etc.)
 - Recording and audio editing software
Microphones

• Microphones
 – electrical property
 • dynamic
 • electret
 – design type
 • handheld
 • shotgun
 • lapel, lavalier
 – patterns
 • omnidirectional
 • cardioid
 • supercardiod
Stands and accessories

- Stand
- Holder
- Windscreen
 - foam
 - fur (‘dead cat’ and ‘dead kitten’)
Recorders

• Analogue
 – Cassette recorder
• Digital
 – Digital audio tape (DAT)
 – Compact disc (CD)
 – Minidisc
 – Flash or SD
 – Computer
Cables and connectors

• Types
 – phono (RCA) cable
 – mini (TRS)
 – XLR

• Unbalanced vs. balanced
 – single core, shielded cables
 – paired core, shielded cables
Recording media

- Analogue
 - Cassette tape

- Digital
 - Digital audio tape (DAT)
 - Compact disc (CD)
 - Minidisc (MD)
 - Secure digital (SD) card
 - Hard drive (direct-to-computer)
Recording and audio editing software

• Expensive
 – Adobe Audition CS6: $350
 – Sony Sound Forge Pro 10: $350
 – Sony Sound Forge Audio Studio: $65

• Affordable, yet powerful
 – Audacity 2.0: $0